

Heuristic Scheduling of Space Mission Downlinks:
A Case study from the Rosetta Mission

Gregg Rabideau1, Federico Nespoli2, Steve Chien1

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

{gregg.rabideau, steve.chien}@jpl.nasa.gov
2European Space Agency, Noordwijk, Netherlands / Telespazio VEGA UK Ltd, Luton, UK.

fnespoli@esa.int

Abstract
Space mission planning/scheduling is determining the set of
spacecraft activities to meet mission objectives while
respecting mission constraints.
 One important type of mission constraint is data
management. As the spacecraft acquires data via its
scientific instruments, it must store the data onboard until it
is able to downlink it to ground communications stations.
Because onboard storage is limited, this can be a
challenging task.
 This paper describes a formulation of the data downlink
scheduling problem used for the Rosetta orbiter, a European
Space Agency cornerstone mission currently investigating
the comet 67P/Churyumov-Gerasimenko. We first describe
the abstract problem and the Rosetta mission specific
problem, along with desirable features of downlink
schedules. We outline several algorithms (including the
Rosetta operational algorithm) and we compare their
performance on both actual mission data.

 Introduction
Spacecraft enable us to measure and explore a wide range
of targets spanning Earth, to the planets and bodies of our
solar system, to bodies beyond our galaxy to the furthest
reaches of the universe.
 Mission planning and scheduling is an extremely
challenging part of operating these space missions. While
in the space community it is termed mission planning, from
an Artificial Intelligence perspective the issue is more
scheduling than planning as the challenge is to find
appropriate times to schedule observations to achieve
mission objectives that conform to the operations
constraints of the spacecraft. Space mission planning
represents a fertile applications area for Artificial

Copyright © 2015, California Institute of Technology. All rights reserved.

Intelligence-based planning and scheduling techniques
with a wide range of deployed systems (for a survey see
[Chien et al. 2012]).
 One particular challenge for space mission planning is
downlink planning. In this problem the data acquired
onboard from engineering telemetry and science
observations is stored onboard. This onboard storage is
limited and is often pre-partitioned in an inflexible
allocation. Commonly, first a schedule is negotiated
between the space mission and a ground communications
station provider (or providers). Once this schedule has
been determined, a prior version of a mission plan is
adapted to ensure that all data is preserved - determining
exactly which portions of onboard storage are downlinked
when so as to enable the science and engineering data to be
acquired and downlinked without loss of data.
 Many variants of this downlink problem exist. For
example, there may be some uncertainty as to the volume
of acquired data. There may be certain types of data that
have deadlines for downlink. We describe a particularly
challenging downlink problem in which data generation
may occur over extremely long periods of time overlapping
downlink periods.

Problem Definition

We formalize the data downlink problem as follows:

Given:
a set of buffers B = {b1, b2, ... bn}
where each bi has
an initial fill state: init_filli
 (fill state of buffer at start of planning interval)
end fill limit: end_filli

94

 (hard limit on fill state of buffer
 at end of planning interval)
hard capacity: capacityi
desired margin: margini
 (soft limit on buffer fill volume
 at any point in the interval)
and the operations plan dictates for each bi in B, there is a

fill_function fill(bi,t)→rate where rate is bits/s

and there is a set of downlinks D={d1,...dm} where each

di=<start_di, end_di, rate_di>

(we assume that no downlinks are overlapping)

for each downlink specify a downlink rate from each
buffer such that the sum of all buffers downlink rates is <=
downlink data rate

∀bi, a function empty(bi,t)→rate (bits/s) such that

∀downlink di
start_di ≤ t ≤ end_di Σ empty(bi,t) ≤ rate_di
(i.e. at any point in time we can only downlink up to our
downlink capacity)

∀t ∈ current_schedule current_fill_state(bi, t) ≤ capacityi

also it is desired that peak fill state and end fill state meet
their targets. Specifically:

no peak margins are violated
∀t in current_schedule, for all bi
max(current_fill_state(bi, t)) ≤ margini

no end margins are violated
for t = end of current_schedule,
∀bi current_fill_state(bi, t)) ≤ end_filli

In reality, as we will see, flight software on actual missions
is not designed to allow for arbitrary downlink policies, so
that our ability to control the empty(bi,t) function is not as
flexible as desired.

The Rosetta Downlink Scheduling Problem

The Rosetta onboard data storage is partitioned into a set of
buffers, called packet stores, for different types of science
and engineering data. Each instrument is designated a
packet store with a specified hard upper volume limit that
cannot be changed during routine scheduling.

 The behavior of each downlink can only be controlled
by two commands: SET_SCI_DW_LEVEL and
STOP_DUMP.
• The first, SET_SCI_DW_LEVEL, is issued at the

start of the downlink and assigns a priority to each
of the packet stores.

• The second, STOP_DUMP, can be issued any time
during the downlink and stops the downlink of data
from the specified packet store for the remainder of
the current downlink. Note that once a packet store
has been stopped, it cannot be restarted for that
downlink.

 These two commands, along with their timing and
parameters, make up the decision variables available to the
scheduler for controlling the “empty” functions described
earlier. To fully understand how these variables affect the
“empty” function, we must examine the onboard software
that controls the data downlink. We summarize the
behavior of the downlink software in the following set of
rules.
• Two of the packet stores (used for high-priority

engineering data) have fixed priorities and cannot
be stopped with STOP_DUMP commands.

• A packet stores remains “active” until the
STOP_DUMP command is issued, after which no
data will be downlinked regardless of priority.

• When more than one active packet store has data
waiting to be downlinked, the one with higher
priority will be dumped first.

• If more than one active packet store all have the
same priority, data will be downlinked in a round-
robin fashion.

• Each packet store has a predefined packet size
which defines the minimum amount of data that will
be downlinked on each round-robin cycle.

• When a packet store contains less than one packet,
downlink for that packet store will stop, possibly
allowing downlink to start on the next highest
priority packet store.

• If, at any time during the downlink, data is added to
an empty but active packet store, downlink for that
packet store will restart, preempting any downlink
from lower-priority packet stores.

• Both the “active” state and the priority are reset at
the end of the downlink.

 Given the two available commands, and the set of
downlink rules, the primary job of the downlink scheduler
is to assign priorities and decide when to stop dumps in
order to prevent overflow on all packet stores. The
secondary goal of the scheduler is to make selections that
prevent margin violations. Last, for some of the packet
stores, there is a desire for the scheduler to keep margins as
large as possible.

95

 To achieve these goals, the scheduler must first model
the behavior of the packet stores so that volume and
overflows can be accurately predicted. Fill rates from
observations, and dump rates from downlinks, are all
provided as inputs to the scheduler. When constructing the
schedule for the first time, the scheduler must decide on
which observations to include as well as which downlink
commands to issue to best satisfy science requests. In this
paper, we focus on the scheduling of downlink commands
only, assuming an observation schedule is fixed. Note that
this type of re-scheduling of the downlink commands is
necessary during short-term planning when certain last-
minute changes must be made (e.g. due to the loss of a
downlink). However, in the larger mission
planning/scheduling process, observation scheduling and
downlink scheduling are performed simultaneously.
 With a model of how data is collected and downlinked,
the scheduler can generate a profile for each packet store
that predicts the data volume at any point during the
planning period. This profile can be used not only to
predict overflows, but also provides information to the
scheduler about when, and by how much, data will
overflow. This information can then be used to make
decisions about which priority values to assign at the start
of each downlink, and when to stop the dump during each
downlink. For example, after a given downlink, if there is
one particular packet store that will overflow sooner, or
exceed its limit by more than any other packet store, then
that packet store should be given higher priority or more
time to downlink.
 In our original implementation, we used a fixed set of
pre-assigned priorities that were mostly unique, and
selected only the length of time for each dump. Due to the
serial nature of the resulting dump schedule, this method
proved brittle to communication loss (packet stores
scheduled near the end of the downlink would be unfairly
impacted). To address this problem, we implemented the
priority-based method, which assigned different priorities
for each downlink but did not issue STOP_DUMP
commands. Ideally, both SET_SCI_DW_LEVEL and
STOP_DUMP would be used to select the best possible
dump schedule, measuring both quality and robustness of
the schedule. This is left for future work.
 In this paper, we focus on the priority-based method,
since this is the default method used in current operations.
Therefore, in this formulation, the control variables are:

 for each downlink: d1,...di
 for each packet store: s1,...sj
 assign a priority to Pa,b for a =1...i, and b = 1...j

Note that these priorities, together with the packet store
initial states and incoming data, effectively define an
empty(bi,t) function.

 Figure 1 contains the pseudo-code for scheduling
downlink priority commands for the Rosetta spacecraft.
The initial schedule contains only fill activities that
generate data into packet stores with continuously
increasing volumes (beyond their limits). Lines 3-6
heuristically assign a priority to each packet store of each
downlink, generating a list of overflows that result. If an
overflow occurs before the end of a downlink, the schedule
will perform limited backtracking to reschedule at most
two of the previous downlinks (line 8).
 The function priorityHeuristic (lines 11-17) implements
the operational heuristic for making priority-based buffer
allocations for a given downlink. Here, packet stores are
given a priority that is inversely proportional to the number
of the downlinks that occur before the first overflow (lines
15-17). This ensures that high priority is given to packet
stores with more urgent need for downlink. A similar
heuristic is used to choose STOP_DUMP times in the
time-based method. As an example, if two or more packet
stores have future overflows at around the same time, then

they will likely be assigned the same priority (or same
amount of time). If an immediate overflow has been
identified for the given packet store, then it will be
assigned the highest priority (line 12-13). An immediate
overflow is defined as one that occurs before the next
downlink. Note that downlink parameters are chosen
independent of other downlinks and packet stores. Choices
made for one downlink have only an indirect impact on the
choices that will be made for future downlinks.
 For evaluation purposes only, we consider three
additional heuristics for selecting priorities. First, as a
baseline, we randomly select priorities. Second, we assign
the highest priority to the packet store with the largest

1. scheduleDownlinks(downlinks)

2. sortByStartTime(downlinks)

3. for each d in downlinks

4. for each ps in packet stores

5. p = priorityHeuristic(d, ps)

6. setDumpPriority(d, ps, p)

7. if overflows exist

8. backtrack

9. return overflows

10.

11. priorityHeuristic(d, ps)

12. if ps has an immediate overflow

13. return MAX_PRIORITY

14. else

15. o = findFirstOverflow(ps)

16. n = numberOfDownlinksBetween(d, o)

17. return MAX_PRIORITY – n

Figure 1: Scheduling algorithm

96

volume measured as percent of capacity. The remaining
buffers are assigned the lowest priority. Last, we
implement a heuristic that assigns priorities by normalizing
the percent full values across the available priorities (e.g.
with 10 priority values, a packet store with volume <10%
is assigned the lowest priority). All four heuristics are
compared in the empirical evaluation section of this paper.
 Finally, certain packet stores may contain time-sensitive
data (e.g. data which may impact future plans). For these
“urgent” packet stores, the downlink latency (i.e. time
between collection and downlink) can be reduced by
increasing the required margin. To find the largest margin
without creating overflows, we wrap the
scheduleDownlinks function in a binary search loop. Each
iteration of the loop either increases or decreases the
margin, depending on the existence of overflows. The
result is a schedule with large margins, keeping the data
volume low, and reducing the time that data waits in the
packet store. This technique is limited, however, to data
collection schedules that have feasible downlink schedules
(i.e. a solution must exist with no overflows).

Estimated Computational Complexity of the
Scheduling Algorithm

Our analysis of the above scheduling algorithm indicates
the following factors in its computational complexity

scheduleDownlinks = O(D * P * F)

where
D = # downlinks,
P = # packet stores,
F = # fill rate changes

Finding the best margin only adds a constant factor lg100
(binary search on a percentage between 1 and 100).
 For the Rosetta mission, downlink planning is typically
processed over a "Medium term plan" or MTP, which is
generally 4 weeks in length. For Rosetta there are 16
packet stores, and for one MTP, there are typically 30+
downlinks and hundreds of fill rate changes.

Empirical Evaluation of the Scheduling
Algorithm

To date, we have conducted an empirical evaluation of the
priority-based scheduling algorithm, the primary method
used in operations. We use data from 4 medium-term
planning (MTP) periods during the Rosetta mission, with
each period spanning approximately 4 weeks. The CPU
time required to generate each MTP downlink schedule
was less than 1 minute running on a typical Windows
laptop. The results are summarized in Figure 2 and Figure
3, with more details provided in Appendix A. The actual
names of the packet stores and MTPs have been replaced
for security reasons.
 We evaluate its performance using the following
metrics:

• Max peak volume percent: the maximum percent
volume consumed for any packet store at any time
during the MTP (no overflow if less than 100%)

• End volume percent: the percent volume
consumed at the end of the MTP period

• Urgent limit: the smallest limit (i.e. largest
margin) found by the schedule for the packet
stores designated as containing urgent data

• Data collected: how much total data was collected
from observations during the MTP

97

• Data downlinked: how much total data was
downlinked out of the packet stores during the
MTP

• Downlink available: how much downlink was
theoretically available during the MTP (downlink
duration multiplied by the bit rate).

• Packet store hard limit: what was the physical
limit on the packet stores, and how do the data
amounts compare

• Packet store soft limit: what was the operational
limit imposed (including margin), and how do the
data amounts compare

• Start and end volume: what was the volume of the
packet store at the start and end of the MTP

 The “Max peak volume” reported in Figure 2 give the
maximum percent volume consumed for any packet store
at any time during the MTP as a percent of the capacity for
that packet store. This shows that, during the given 16-
week period, at no point are any of the packet stores
predicted to overflow. In addition, the data in Appendix A
shows that at no point are any of the packet stores expected
to exceed the desired “soft” limit. Some margin (typically
20%) on the packet store volume is maintained in order to
account for uncertainties in the data collection and

downlink model, which can occur from such things as
variable data compression rates and communication
outages. The “End volume” series in Figure 2 shows the
percent volume consumed at the end of the MTP.
Operationally, there is a preference to have minimal carry-
over from one MTP to the next. For these four MTPs, the
end volume stays below 10% of the capacity.
 In each MTP, the data in two or three of the packet
stores was considered urgent (designated with a ‘*’ in the
tables in Appendix A), and the downlink scheduler
searched for the largest feasible margin on the packet
stores. This meant keeping the volume low for the urgent
packet stores without overflowing the other packet stores.
In this way, the urgent data is not left to accumulate in the
packet stores over long periods of time. The “Urgent limit”
series in Figure 2 gives the smallest limit found by the
scheduler for the packet stores containing urgent data.
 In Figure 3, we see that the data collected amounts are
very similar to the downlinked amounts for each MTP. It
also shows that both values stay greater than 80% of the
theoretical downlink available. The available downlink
increases in the last MTP due to an increase in downlink
rate, which occurs as the spacecraft exits solar conjunction.
Finally, we can see that the data collected in each MTP is
roughly between 2x and 3x the total packet store limit.

98

	paper_7.pdf
	BepiColombo Science Data Storage and Downlink Optimization Tool
	2 nicola.policella@esa.int, Senior Research Engineer, Advanced Mission Concepts Office, ESOC, Germany
	3 simone.fratini@esa.int, Senior Research Engineer, Advanced Mission Concepts Office, ESOC, Germany
	4 jonathan.mcauliffe@esa.int, Operations Scientist, BepiColombo Science Ground Segment, ESAC, Spain
	Abstract
	Introduction
	MPO SSMM Storage and Downlink
	Radio Frequency bands
	Latency
	PID to Packet Store allocation
	SSMM packet stores priorities
	Science Data Downlink Mechanisms
	On-Board Data Storage and Downlink Modelling
	Problem Rationale
	SSMM AI Tool Description
	Model-Based Representation with Timelines
	Solving Approach
	Flow Network Model
	Solving Methods
	Finding a downlink plan
	Iterative Leveling: Improving Latency
	Conclusions
	References

	paper_13a.pdf
	Daniel Tran* and Mark D. Johnston*
	Abstract

	1. Introduction
	2. DSN Scheduling: Process and Software
	3. Scheduling in the Follow-the-Sun Era
	4. The Role of Link Complexity
	5. Prototype and Experiments
	Link Assignment Algorithm
	User Interface

	6. Results and Conclusions
	Bibliography

	preface.pdf
	Preface
	Table of Contents
	Program Committee

	preface.pdf
	Preface
	Table of Contents
	Program Committee

	Preface3.pdf
	Preface
	Table of Contents
	Program Committee

	toc.pdf
	Preface
	Table of Contents
	Program Committee

	toc.pdf
	Preface
	Table of Contents
	Program Committee

